WEINZIERL _

Specification

KNX BAOS Binary Protocol

BAQOS Binary Services Version 2.x for

KNX BAOS Module 830/ 832
KNX BAOS Module 830.1 secure
KNX BAOS Module 838 kBerry
KNX BAOS Module RF 840

KNX USB Interface 312 / 332

KNX USB Module 322

KNX USB Module 323 secure

KNX USB Interface Stick 333 secure

KNX IP BAOS 771/ 772
KNX IP BAOS 773/ 774
KNX IP BAOS 774.1 secure
KNX IP BAOS 777

kTux: KNX Stack for Linux

WEINZIERL ENGINEERING GmbH
Achatz 3-4

84508 Burgkirchen an der Alz
GERMANY

Tel.: +498677/91636-0
E-Mail: info@weinzierl.de
Web: www.weinzierl.de

© 2024 WEINZIERL ENGINEERING GmbH Page 1/67

WEINZIERL _

Protocol version supported by devices

Device

Protocol version

KNX BAOS Module 830 / 832
KNX BAOS Module 838 kBerry
KNX BAOS Module RF 840

KNX USB Interface 312 / 332 2.0
KNX USB Module 322

KNX IP BAOS 771/ 772

KNX IP BAOS 773/ 774

KNX IP BAOS 777 2.1

(777 specific)

KNX BAOS Module 830.1 secure
KNX USB Module 323 secure

KNX USB Interface Stick 333 secure
KNX IP BAOS 774.1 secure

kTux: KNX Stack for Linux

2.2
(Secure extensions)

© 2024 WEINZIERL ENGINEERING GmbH

Page 2/67

WEINZIERL _

Content
1 What iS @n OB JECESEIVEI? ... e e e e e e ettt e e e e e e eaaenes 5
2 Encapsulation of the ObjectServer protoCol.............uuuuiiiiiiiiiiiiiiiii e 5
2.1 GEMlING SLAMEAeeeeieieiiieieeeee ettt 6
3 2N @ IS odo T ¢ = o] o) (Yoo | PP 7
T R €1 AT oY 1 (=T o A (T o PSP 8
3.2 GEtSEIVEIEIMLRES ... ettt eaaans 9
3.3 SetSEIVEIIEM.REY . oeeeeiiiiii e 10
3.4 SElSEIVEITEIM.RES e ettt e e e e e e 11
I 1= YT | =T o 1 o 12
3.6 GetDatapOiNtDESCIIPLION. RET. uuuuiiiiiiiiiiiiiiieieeebeeee bbb enbebbeennnnnnnennnee 13
3.7 GetDatapOiNtDESCIPLION. RESuuuuiiiiiiiiiiiiiiiiiiitb bbb eaneebe e nnennannnee 14
3.8 GetDeSCrPtIONSIIING. REG. e e e e e e e e e e e e e 16
3.9 GetDeSCHPONSIIING.RESo e e e e e e e e e e 17
3.10 GetDatapOINtVAIUE. REQ . .. e e et e e e e e e e e e r e e e e e 18
3. 11 GetDatapOINtVAIUE.RESuiiiiiiiiiiiiiiiiiiiiiei bbb ennnnnes 19
3.12 DatapOiNtVAIUE.INGeuiiiiiiiiiiiiiiiiiiie bbb 21
3.13 SetDatapOINtVaAlUC.REI. ... i eee e e e e et e e e e e e e e rr e e e 22
3.14 SetDatapOINtVaAlUB.RES e et e e e e e e e e e 24
3.15 GetParameterBYIE.REG 25
3.16 GetParameterBYIE.RES ... e 26
3.17 SetParameterBYtE.RE .. cc.u i 27
3.18 SetParameterBYLE.RES e 28
4 BAOS Protocol Via Serial FTL.2 ..ot e e et e e e e e eanene s 29
A1 FTL.2 PrOTOCOL . .. 29
4.2 Host protocol security for serial or USB interfaceccccooeiiiiiiiiiiiiiii e, 33
O T o U (=38 = 1 1 = PP 33
4.2.2 ObjectServer data ENCIYPLIONoviiiiiiiiiiiiieiiee et 36
e N B T {1 0 1= o I =TS0 11 (o] 41
O T ox (0] (VN o= =] AN 42
5 BAOS ProtOCOI VIA USBuuuuiiiiiiiiiiiiiiiiiiiiitiiieiaeeeeasssesessessssssssssssnssssssssssssssssssssssssssssssnnes 43
5.1 Host protocol Security USB INtEITACEuuuuiuiiiiiiiiiiiiiiiiiiiiiiiitiiiieeebbeeeeeeeeeeeeeeeeeeeeeeeee 43
6 BAOS ProtOCOl VIa IP ...t e et e e e e e 44
G N 1 | 44
6.1.1 Example (GetServerllem) oottt e e e e et e e e e eeenaaas 46
5.2 1P DISCOVEIY ...ttt 47
6.2.1 SEAICH.REQ ..o 48
B.2.2 SBAICN.RES ... e et e e e e 49
LG T | e Y= o 0 1Y =4 (=] 1 (o) o PP 50
R Tt R Y o | = IR =TT o PR 51
LR T @] o 1= 1T o ISP 52

© 2024 WEINZIERL ENGINEERING GmbH Page 3/67

WEINZIERL _

6.3.3 COMMUNICALION ..o 53
L B Y Tol R0 [1Yo AV =] o SRR 54
6.5 EXAMPIES ...t e 55

6.5.1 Unsecure ObjectServer COMmMUNICALIONcoeiiiiiiiieeee e 55

6.5.2 Secure ObjectServer COMMUNICALIONcceceiiiieiiiiiiie e eee e e e e e e e e e e e e e earers 56
APPENIX A, SEIVEN ILEM IDS . .ciiiiiiiii e e e e e e ettt e e e e e e e e aanea s 58
APPENdIX B, EITOr COURS ... 62
Appendix C. Datapoint VaIUE tYPES ...ccooi i 63
Appendix D. Datapoint tyPES (DPT) ...cccciiiiiiiiii e e e et e e e e e 64
AppendiX E. ENCryption @XampPle ...t 65
Appendix F. DecCryption eXample ... 66

© 2024 WEINZIERL ENGINEERING GmbH Page 4/67

WEINZIERL _

1 What is an ObjectServer?

The KNX Standard defines a protocol stack according to the ISO/OSI reference model. While
standard KNX interfaces grant an access to the KNX network on data link layer, an object server
offers an access on application layer. So a client can talk to KNX data points without knowing
telegram format or addresses used in the installation.

The ObjectServer is a hardware or software component, which is connected to the KNX bus and
offers to the client a set of the defined “objects”. These objects are the server properties (called
“items”), KNX datapoints (known as “communication objects” or as “group objects”) and KNX
configuration parameters (Figure 1). The communication between server and clients is based on
the ObjectServer protocol that is encapsulated into some other communication protocol (e.g.
FT1.2, IP) depending on the interface type used.

ltems

Client <Object8erver protocol > Datapoint <>

Parameters

ObjectServer

Figure 1: Communication between ObjectServer and Client

2 Encapsulation of the ObjectServer protocol

The ObjectServer protocol has been defined to achieve the whole functionality on small embedded
platforms and on data channels with limited bandwidth. As a consequence of this, the protocol is
kept very slim and has no connection management, like connection establishment, user
authorization, etc. Therefore, it is advisable and highly recommended to encapsulate the
ObjectServer protocol into some existing transport protocol to get a useful solution for an easy
access to the KNX datapoints and to the KNX bus.

Depending on the interface type the BAOS protocol is encapsulated in:
e Serial: FT1.2 frames
e USB: HID reports
o |IP: UDP or TCP frames

© 2024 WEINZIERL ENGINEERING GmbH Page 5/67

2.1 Getting started

WEINZIERL _

To get familiar with the BAOS architecture we recommend to try the BAOS protocol using the free
version of our bus monitor and analyzer tool Net'n Node (Figure 2). The integrated BAOS view

supports serial, USB and IP connections. Net'n Node can also send and receive KNX telegrams in
parallel. So, it shows the relation between BAOS services and KNX communication.

Tellistl*
Commands Capture Interfaces
e " " " 0 0 0]
MNum % Telegram Interface 1 Timestamp Service Src-Addr Dest-Addr Control
— =
1325 = FO &1 00 2B 00 01 00 2B 04 CO A% 01 26 192.168.1.38.. X 2016-03-02 11:06:30.. GetServerltem.res
1326 = F0 01 00 2C 00 01 192.168.1.38. % 2016-03-02 11:06:30_ GetServerItem.req
1327 = FO &1 00 2C 00 01 00 2C 04 FF FF FF 00 192.168.1.38.. X 2016-03-02 11:06:30.. GetServerltem.res
1328 z F0 01 00 2D 00 01 192.168.1.38. * 2016-03-02 11:06:30_ GetServerItem.req
132 = FO 81 00 2D 00 01 00 2D 04 CO AS 01 01 192.168.1.32.. L 2016-03-02 11:06:30.. GetServerltem.res
1330 z FO 01 00 2E 00 01 192.168.1.38.. = 2016-03-02 11:06:30.. GetServerItem.req
1331 = FO 81 00 2E 00 01 00 2E 01 73 192.168.1.38.. 1L 2016-03-02 11:06:30.. GetServerltem.res
1332 = FO 01 00 2F 00 01 192.168.1.38.. X 2016-03-02 11:06:30.. GetServerltem.req
1333 = FO 81 00 2F 00 01 00 2F 04 56 D& C9 1C 192.168.1.38.. 1 2016-03-02 11:06:30.. GetServerItem.res
1334 = FO 01 00 30 00 01 192.168.1.38.. X 2016-03-02 11:06:30.. GetServerltem.req
1335 z FO &1 00 30 00 01 00 30 01 00 192.168.1.38.. 1 2016-03-02 11:06:30.. GetServerItem.res
1336 = F0 01 00 31 00 01 192.168.1.368.. & 2016-03-02 11:06:30.. GetServerItem.req
1337 z FO 81 00 31 00 01 00 31 01 01 192.168.1.38.. X 2016-03-02 11:06:30.. GetServerltem.res
1338 = FO 01 00 03 00 01 192.168.1.368.. & 2016-03-02 11:07:30.. GetServerItem.req
1339 = FO &1 00 09 00 01 00 09 04 00 00 29 g8 192.168.1.38.. X 2016-03-02 11:07:30.. GetServerltem.res
1340 = F0 01 00 09 00 01 192.168.1.38. * 2016-03-02 11:08:30. GetServerItem.req
1341 = FO &1 00 03 00 01 00 09 04 00 00 29 C4 192.168.1.38.. X 2016-03-02 11:08:30.. GetServerltem.res
“ n
BAOS View
192.168.1.38 KNX IP Baos 777 Ms
Datapoints
Id Description DatapointType Size Prioity C R W T U Raw Value(hex) Interpreted Value #Indications =~
74 DPT 01 - Binary 1 Bit(s) Low Cl-1-1T]- 0
75 DPT 05 - 8-Bit Unsigned Value 1Byte(s) Low C W u 1 0
76 DPT 09 - 2-Octet Float Value 2 Byte(s) Low C W u I 0
79 DPT 01 - Binary 1Bit(s) Low C W u 1 0
82 DPT 01 - Binary 1 Bit(s) Low C W u I 0
85 DPT 01 - Binary 1Bit(s) Low C W u 1 0
83 DPT 01 - Binary 1Bit(s) Low s w U 0
91 DPT (1 - Binary 1Bit(s) Low C W u 1 0
94 DPT 01 - Binary 1Bit(s) Low E W u|I 0
97 DPT 09 - 2-Octet Float Value 2 Byte(s) Low C W u I 0
98 DPT 09 - 2-Octet Float Value 2 Byte(s) Low C W T U 1 0
100 DPT 18 - Scene Control 1Byte(s) Low C T 0
103 DPT 232 - 3-Octet RGB Value 3 Byte(s) Low z T 0
104 DPT 232 - 3-Octet RGB Value 3 Byte(s) Low C W u 1 0
127 DPT 05 - 8-Bit Unsigned Value 1 Byte(s) Low C T 0
130 DPT 05 - 8-Bit Unsigned Value 1Byte(s) Low C W u 1 0 =
133 DPT 05 - 8-Bit Unsigned Yalue 1Byte(s) Low C T 0
134 DPT 05 - 8-Bit Unsigned Value 1 Byte(s) Low C W u 1 0
136 DPT 09 - 2-Octet Float Value 2 Byte(s) Low C W U |1 0 i
< 1 +

Figure 2: Net’n Node telegram view with BAOS data points

For the serial modules, a starter kit is available which allows to connect the BAOS Modules to a PC

using a virtual comport. To implement a client application, a demo project with source for the

starter kit is available at our web page.

© 2024 WEINZIERL ENGINEERING GmbH

Page 6/67

WEINZIERL _

3 BAOS core protocol

The communication between the server and the client is based on an ObjectServer protocol which
consists of requests sent by a client and server responses. Indications inform the client about
changes of a datapoint’s value, which is sent asynchronously from the server to the client.

The BAOS core protocol is used in all BAOS modules or devices. Depending on the interface type
(serial, USB, IP) corresponding frames are used as transport protocols.

The following services are defined:

GetServerltem.Reg/Res
SetServerltem.Reg/Res
Serverltem.Ind
GetDatapointDescription.Reqg/Res
GetDescriptionString.Reg/Res
GetDatapointValue.Reg/Res
DatapointValue.Ind
SetDatapointValue.Reg/Res
GetParameterByte.Reg/Res
SetParameterByte.Reg/Res

© 2024 WEINZIERL ENGINEERING GmbH Page 7/67

3.1 GetServerltem.Req

WEINZIERL _

This request is sent by the client to get one or more server items (properties). The data packet
consists of six bytes:

Offset | Field Size Value Description

+0 MainService 1 OxFO Main service code

+1 SubService 1 0x01 Subservice code

+2 Startltem 2 ID of first item

+4 NuUmberofitems 2 Maximum number of items to
return

The server sends a response to the client containing the values of supported items in the range of
[Startltem ... Startltem+NumberOfltems-1].

See Appendix A for the item IDs.

© 2024 WEINZIERL ENGINEERING GmbH

Page 8/67

3.2 GetServerltem.Res

This response is sent by the server as answer to the GetServerltem request. In case of an error,

WEINZIERL _

the server sends a negative response using the following format:

Offset | Field Size Value Description

+0 MainService 1 O0xFO Main service code
+1 SubService 1 0x81 Subservice code
+2 Startltem 2 ID of bad item

+4 NumberOfitems 2 0

+6 ErrorCode 1 Error code

See Appendix B for the error codes.

If the request has been successfully processed by the server it sends a positive response to the
client using the following format:

Offset | Field Size Value Description

+0 MainService 1 0xFO Main service code

+1 SubService 1 0x81 Subservice code

+2 Startltem 2 As in request

+4 NumberOfitems 2 Number of items in this response
+6 First item ID 2 ID of first item

+8 First item data length 1 Data length of first item
+9 First item data 1-255 Data of first item

+N-3 Last item ID 2 ID of last item

+N-1 Last item data length 1 Data length of last item
+N Last item data 1-255 Data of last item

Unsupported items are silently ignored. They do not appear in the response.

© 2024 WEINZIERL ENGINEERING GmbH

Page 9/67

WEINZIERL _

3.3 SetServerltem.Req

This request is sent by the client to set a new value of one or more server items.

Offset | Field Size Value Description

+0 MainService 1 O0xFO Main service code

+1 SubService 1 0x02 Subservice code

+2 Startltem 2 ID of first item to set
+4 NumberOfitems 2 Number of items in this request
+6 First item ID 2 ID of first item

+8 First item data length 1 Data length of first item
+9 First item data 1-255 Data of first item

+N-3 Last item ID 2 ID of last item

+N-1 Last item data length 1 Data length of last item
+N Last item data 1-255 Data of last item

The server sends a response to the client whether the setting was successful or not.

See Appendix A for the item IDs.

© 2024 WEINZIERL ENGINEERING GmbH Page 10/67

3.4 SetServerltem.Res

WEINZIERL _

This response is sent by the server as answer to the SetServerltem request. In case of an error,
the server sends a negative response using the following format:

Offset | Field Size Value Description

+0 MainService 1 OxFO Main service code
+1 SubService 1 0x82 Subservice code
+2 Startltem 2 ID of bad item

+4 NumberOfltems 2 0

+6 ErrorCode 1 Error code

Note: No item is set in case of an error. Even if the previous items would do.

See Appendix B for the error codes.

If a request has been successfully processed by the server it sends a positive response to the

client using the following format:

Offset | Field Size Value Description

+0 MainService 1 O0xFO Main service code
+1 SubService 1 0x82 Subservice code
+2 Startltem 2 As in request

+4 NumberOfltems 2 0

+6 ErrorCode 1 0

© 2024 WEINZIERL ENGINEERING GmbH

Page 11/67

WEINZIERL _

3.5 Serverltem.Ind

This indication is sent asynchronously by the server if one or more server items have been
changed. Not all server items support indications. See Appendix A. Serverltem.Ind has the
following format:

Offset | Field Size Value Description

+0 MainService 1 O0xFO Main service code

+1 SubService 1 0xC2 Subservice code

+2 Startltem 2 ID of first item

+4 NumberOfltems 2 Number of items in this indication
+6 First item ID 2 ID of first item

+8 First item length 1 Data length of first item
+9 First item data 1-255 Data of first item

+N-3 Last item ID 2 ID of last item

+N-1 Last item data length 1 Data length of last item
+N Last item data 1-255 Data of last item

© 2024 WEINZIERL ENGINEERING GmbH Page 12/67

3.6 GetDatapointDescription.Req

WEINZIERL _

This request is sent by the client to get the description of one or more datapoints. The data packet
consists of six bytes:

Offset | Field Size Value Description

+0 MainService 1 OxFO Main service code

+1 SubService 1 0x03 Subservice code

+2 StartDatapoint 2 ID of first datapoint

4 NumberOfDatapoints 2 L\:I)arzitTrl:]m number of descriptions

The server sends a response to the client containing the descriptions of datapoints in the range of

[StartDatapoint ... StartDatapoint + NumberOfDatapoints - 1].

© 2024 WEINZIERL ENGINEERING GmbH

Page 13/67

WEINZIERL _

3.7 GetDatapointDescription.Res

This response is sent by the server as answer to the GetDatapointDescription request. In case of
an error, the server sends a negative response using the following format:

Offset | Field Size Value Description

+0 MainService 1 OxFO Main service code
+1 SubService 1 0x83 Subservice code
+2 StartDatapoint 2 As in request

+4 NumberOfDatapoints 2 0

+6 ErrorCode 1 Error code

See Appendix B for the error codes.

If a request has been successfully processed by the server it sends a positive response to the
client using the following format:

Offset | Field Size Value Description

+0 MainService 1 O0xFO Main service code

+1 SubService 1 0x83 Subservice code

+2 StartDatapoint 2 As in request

2 N f ipti in thi

4 NumberOfDatapoints umber of descriptions in this
response

+6 First DP ID 2 ID of first datapoint

+8 First DP value type 1 Value type of first datapoint

: . 1 Configuration flags of first

+9 First DP config flags IgL.J I g !
datapoint

+10 First DP DPT 1 Datapqmt type (DPT) of first
datapoint

+N-4 Last DP ID 2 ID of last datapoint

+N-2 Last DP value type 1 Value type of last datapoint

. 1 Configuration flags of last

+N-1 Last DP config flags g- g
datapoint

+N Last DP DPT 1 Datapqmt type (DPT) of last
datapoint

See Appendix C for the value types and 0 for the datapoint types.

© 2024 WEINZIERL ENGINEERING GmbH

Page 14/67

Format of configuration flags:

WEINZIERL _

Bit Meaning Value Description
00 System priority
01 High priority
1-0 Transmit priority —
10 Alarm priority
11 Low priority
5 Datapoint 0 Disabled
communication 1 Enabled
0 Disabled
3 Read from bus
1 Enabled
) 0 Disabled
4 Write from bus
1 Enabled
0 Disabled
5 Read on init
1 Enabled
. 0 Disabled
6 Transmit to bus
1 Enabled
0 Disabled
7 Update on response
1 Enabled

© 2024 WEINZIERL ENGINEERING GmbH

Page 15/67

3.8 GetDescriptionString.Req

WEINZIERL _

This request is sent by the client to get the human-readable description string of one or more

datapoints. The data packet consists of six bytes:

Offset | Field Size Value Description
+0 MainService 1 OxFO Main service code
+1 SubService 1 0x04 Subservice code
+2 StartString 2 ID of first datapoint string
. 2 Maximum number of strings to
+4 NumberOfStrings return g

The server sends a response to the client containing the strings of datapoints in the range of

[StartString ... StartString+NumberOfStrings-1].

Note: This service is not available on some servers.

© 2024 WEINZIERL ENGINEERING GmbH

Page 16/67

3.9 GetDescriptionString.Res

WEINZIERL _

This response is sent by the server as answer to the GetDescriptionString request. In case of an
error, the server sends a negative response using the following format:

Offset | Field Size Value Description

+0 MainService 1 OxFO Main service code
+1 SubService 1 0x84 Subservice code
+2 StartString 2 As in request

+4 NumberOfStrings 2 0

+6 ErrorCode 1 Error code

See Appendix B for the error codes.

If a request has been successfully processed by the server it sends a positive response to the
client using the following format:

Offset Field Size Value Description
+0 MainService 1 OxFO Main service code
+1 SubService 1 0x84 Subservice code
+2 StartString 2 As in request
. Number of strings in this
+4 NumberOfStrings 2 9
response
. Length of first DP description
+6 StrLen of first DP 2 . 9 P
string
. . . Description string of first
+8 First DP description string StrLen p g
datapoint
Length of last DP description
+N-2 | StrLen of last DP 2 ng P
string
. . Description string of last
+N Last DP description string StrLen p g
datapoint

The datapoint description strings are not null terminated. The length of each datapoint description
string is given by the corresponding StrLen.

© 2024 WEINZIERL ENGINEERING GmbH

Page 17/67

3.10 GetDatapointValue.Req

WEINZIERL _

This request is sent by the client to get the value of one or more datapoints. The data packet
consists of seven bytes:

Offset | Field Size Value Description
+0 MainService 1 OxFO Main service code
+1 SubService 1 0x05 Subservice code
+2 StartDatapoint 2 ID of first datapoint
+4 NumberOfDatapoints 2 L\(/I)arzitT%m number of data-points
16 Filter 1 Criteria_l which data points shall
be retrieved
The filter criteria are coded as follows:
Value Description
0x00 Get all datapoint values
0x01 Get only valid datapoint values
0x02 Get only updated datapoint values
0x03 ... OxFF Reserved

The server sends a response to the client containing the values of datapoints in the range of
[StartDatapoint ... StartDatapoint+NumberOfDatapoints-1].

© 2024 WEINZIERL ENGINEERING GmbH

Page 18/67

3.11 GetDatapointValue.Res

WEINZIERL _

This response is sent by the server as answer to the GetDatapointValue request. In case of an
error, the server sends a negative response using the following format:

Offset | Field Size Value Description

+0 MainService 1 OxFO Main service code

+1 SubService 1 0x85 Subservice code

+2 StartDatapoint 2 Index of the bad datapoint
+4 NumberOfDatapoints 2 0

+6 ErrorCode 1 Error code

See Appendix B for the error codes.

If a request has been successfully processed by the server it sends a positive response to the
client using the following format:

Offset | Field Size Value Description

+0 MainService 1 O0xFO Main service code

+1 SubService 1 0x85 Subservice code

+2 StartDatapoint 2 As in request

+4 NumberOfDatapoints 2 :\:;r;:iec’f datapoints in this
+6 First DP ID 2 ID of first datapoint

+8 First DP state 1 State byte of first datapoint
+9 First DP length 1 Length of first datapoint
+10 First DP value 1-14 Value of first datapoint

+N-4 Last DP ID 2 ID of last datapoint

+N-2 Last DP state 1 State byte of last datapoint
+N-1 Last DP length 1 Length byte of last datapoint
+N Last DP value 1-14 Value of last datapoint

© 2024 WEINZIERL ENGINEERING GmbH

Page 19/67

WEINZIERL _

Format of state byte:

Bit Meaning Value Description
7 Reserved 0 Reserved
6 Reserved 0 Reserved
5 Reserved 0 Reserved
0 Object value is unknown
4 Valid flag
1 Object has already been received
0 Value is not updated
3 Update flag -
1 Value is updated from bus
0 Write request should be sent
2 Read request flag
1 Read request should be sent
00 Idle/OK
o 01 Idle/error
1-0 Transmission status —
10 Transmission in progress
11 Transmission request

A length of less than one byte (e.g. DPT 3: 4-bits, Dimming, Blinds) for KNX datapoints are coded
as follows:

7 6 5 4 3 2 1 0
1-bit: O(0|O0|O0O|O0O|O0]|]O0O|X
7 6 5 4 3 2 1 0

2-bits: O[O0O|O0O[O0O|O0O|O0]|x]|X
7 6 5 4 3 2 1 0

3-bits: O[O0O|O0O|[O0O|O0| x| Xx]X
7 6 5 4 3 2 1 0

4-bits: O[O0|O0O|O0|x|Xx]|X]X
7 6 5 4 3 2 1 0

5-bits: O[O0 |0 x| Xx|X]|X]X
. 7 6 5 4 3 2 1 0
6-bits: O[O0 | x| x| XxX|Xx]|Xx]X
7 6 5 4 3 2 1 0

7-bits: O x| x| x| Xx|Xx]|Xx]X

© 2024 WEINZIERL ENGINEERING GmbH Page 20/67

3.12 DatapointValue.Ind

WEINZIERL _

This indication is sent asynchronously by the server if a value of one or more datapoints have been

changed. It has the following format:

Offset | Field Size Value Description

+0 MainService 1 OxFO Main service code

+1 SubService 1 0xC1 Subservice code

+2 StartDatapoint 2 ID of first datapoint

+4 NumberOfDatapoints 2 m::zzgg:f datapoints in this
+6 First DP ID 2 ID of first datapoint

+8 First DP state 1 State byte of first datapoint
+9 First DP length 1 Length of first datapoint
+10 First DP value 1-14 Value of first datapoint

+N-4 Last DP ID 2 ID of last datapoint

+N-2 Last DP state 1 State byte of last datapoint
+N-1 Last DP length 1 Length byte of last datapoint
+N Last DP value 1-14 Value of last datapoint

Format of the state byte see the description of the GetDatapointValue response.

See 0 for the datapoint types.

© 2024 WEINZIERL ENGINEERING GmbH

Page 21/67

3.13 SetDatapointValue.Req

WEINZIERL _

This request is sent by the client to set the new value of one or more datapoints or to
request/transmit the new value on the bus. It can be used to clear the transmission state of the

datapoint, also.

Offset | Field Size Value Description

+0 MainService 1 O0xFO Main service code

+1 SubService 1 0x06 Subservice code

+2 StartDatapoint 2 ID of first datapoint to set

+4 NumberOfDatapoints 2 Number of datapoints to set

+6 First DP ID 2 ID of first datapoint

+8 First DP command 1 Command byte of first datapoint
+9 First DP length 1 Length byte of first datapoint
+10 First DP value 1-14 Value of first datapoint

+N-4 Last DP ID 2 ID of last datapoint

+N-2 Last DP command 1 Command byte of last datapoint
+N-1 Last DP length 1 Length byte of last datapoint
+N Last DP value 1-14 Value of last datapoint

© 2024 WEINZIERL ENGINEERING GmbH

Page 22/67

Format of command byte:

WEINZIERL _

Bit Meaning Value Description
7-4 Reserved 0000 Reserved
0000 No command
0001 Set new value
0010 Send value on bus
0011 Set new value and send on bus
3.0 0100 Read new value via bus
Datapoint command | 0101 Clear datapoint transmission state
0110 Reserved
1111 Reserved

The datapoint value length must match the value length, which is selected by the ETS project

database.

The value length “zero” is acceptable and means: “no value in frame”. It can be used for instance
to clear the transmission state of the datapoint or to send the current datapoint value on the bus.

© 2024 WEINZIERL ENGINEERING GmbH

Page 23/67

3.14 SetDatapointValue.Res

WEINZIERL _

This response is sent by the server as answer to the SetDatapointValue request. In case of an
error, the server sends a negative response using the following format:

Offset | Field Size Value Description

+0 MainService 1 OxFO Main service code

+1 SubService 1 0x86 Subservice code

+2 StartDatapoint 2 Index of bad datapoint
+4 NumberOfDatapoints 2 0

+6 ErrorCode 1 Error code

Note: No datapoint is set in case of an error. Even if the previous datapoints would do.

See Appendix B for the error codes.

If a request can be successfully processed by the server, it sends a positive response to the client
using the following format:

Offset | Field Size Value Description

+0 MainService 1 O0xFO Main service code
+1 SubService 1 0x86 Subservice code
+2 StartDatapoint 2 As in request

+4 NumberOfDatapoints 2 0

+6 ErrorCode 1 0

© 2024 WEINZIERL ENGINEERING GmbH

Page 24/67

3.15 GetParameterByte.Req

WEINZIERL _

This request is sent by the client to get/read one or more parameter bytes. In the KNX system

parameters are used for device settings that typically are not changed during runtime operation.
Parameters have to be defined by the device manufacturer in the ETS product entry using a tool
called KNX Manufacturer Tool (MT), available from KNX Association.

The installation specific settings of the parameters can be done in the ETS parameter dialog by the
installer. A parameter can have a size of 1 bit up to several bytes. The BAOS service
GetParameterByte.Req allows an access to parameter values on byte level.

The data packet of the GetParameterByte request consists of six bytes:

Offset | Field Size Value Description

+0 MainService 1 O0xFO Main service code

+1 SubService 1 0x07 Subservice code

+2 StartByte 2 Index of first byte

+4 NumberOfBytes 5 lr\(/le?lj(ri:um number of bytes to

The server sends a response to the client containing the values of the parameters in the range of
[StartByte ... StartByte+NumberOfBytes-1].

© 2024 WEINZIERL ENGINEERING GmbH

Page 25/67

WEINZIERL _

3.16 GetParameterByte.Res

This response is sent by the server as answer to the GetParameterByte request. In case of an
error, the server sends a negative response using the following format:

Offset | Field Size Value Description

+0 MainService 1 OxFO Main service code

+1 SubService 1 0x87 Subservice code

+2 StartByte 2 Index of the bad parameter
+4 NumberOfBytes 2 0

+6 ErrorCode 1 Error code

See Appendix B for the error codes.

If the request has been successfully processed by the server it sends a positive response to the
client using following format:

Offset | Field Size Value Description

+0 MainService 1 0xFO Main service code

+1 SubService 1 0x87 Subservice code

+2 StartByte 2 As in request

+4 NumberOfBytes 2 Number of bytes in this response
+6 First byte 1 First parameter byte

+N Last byte 1 Last parameter byte

© 2024 WEINZIERL ENGINEERING GmbH Page 26/67

WEINZIERL _

3.17 SetParameterByte.Req

This request is sent by the client to set (write) one or more the parameter bytes. Starting with
version 5 ETS is able to read parameter values modified by the device.

The data packet of the SetParameterByte request has the following structure:

Offset | Field Size Value Description

+0 MainService 1 0xFO Main service code
+1 SubService 1 0x08 Subservice code

+2 StartByte 2 Index of first byte
+4 NumberOfBytes 2 Number of bytes

+6 First byte 1 First parameter byte
+N Last byte 1 Last parameter byte

When all the parameter bytes have been written by the client, it can send a request without data to
the server to indicate that the written data can be flushed to the non-volatile memory:

Offset | Field Size Value Description

+0 MainService 1 0xFO Main service code
+1 SubService 1 0x08 Subservice code
+2 StartByte 2 0x0000 Index of first byte
+4 NumberOfBytes 2 0x0000 Number of bytes

The server sends a response to the client with the result of the operation.

Note: Implemented in devices supporting protocol version 2.2 and above.

© 2024 WEINZIERL ENGINEERING GmbH Page 27/67

3.18 SetParameterByte.Res

WEINZIERL _

This response is sent by the server as answer to the SetParameterByte request. In case of an
error, the server sends a negative response using the following format:

Offset | Field Size Value Description

+0 MainService 1 OxFO Main service code

+1 SubService 1 0x88 Subservice code

+2 StartByte 2 Index of the bad parameter
+4 NumberOfBytes 2 0

+6 ErrorCode 1 Error code

See Appendix B for the error codes.

If a request has been successfully processed by the server it sends a positive response to the

client using the following format:

Offset | Field Size Value Description

+0 MainService 1 O0xFO Main service code
+1 SubService 1 0x88 Subservice code
+2 StartByte 2 As in request

+4 NumberOfBytes 2 0

+6 ErrorCode 1 0

Note: Implemented in devices supporting protocol version 2.2 and above.

© 2024 WEINZIERL ENGINEERING GmbH

Page 28/67

WEINZIERL _

4 BAOQOS Protocol via Serial FT1.2

The encapsulation of the ObjectServer protocol into FT1.2 (also known as PEI type 10) protocol is
simple and is shown in Figure .

S L L S C |OxFO C E

N J N J
Y Y Y

FT1.2 header ObjectServer message FT1.2 tail

Figure 3: Integration of the ObjectServer message into a FT1.2 frame

4.1 FT1.2 protocol

The FT1.2 transmission protocol is based on the international standard IEC 870-5-1 and IEC 870-
5-2 (DIN 19244). The used hardware interface for the transmission is the Universal Asynchronous
Receiver Transmitter (UART). The frame format of the FT1.2 protocol is fixed to 8 data bits, 1 stop
bit and even parity bit. The default communication speed is 19200 Baud.

Communication procedure

The typical communication procedure between the host and the ObjectServer is shown in Figure 4.

© 2024 WEINZIERL ENGINEERING GmbH Page 29/67

WEINZIERL _

Host ObjectServer

Reset request

Acknowledgement —>

Data

Acknowledgement —r

Data

hl Acknowledgement

Data

- Acknowledgement

Figure 4: Typical communication procedure

Below is an example of the communication between the host and the ObjectServer.
Frame format
The FT1.2 protocol defines three frame types.

The first one is the positive acknowledgement frame and consists of only one byte of the value
OXES5.

The second frame type is 4 bytes long and is used for the reset request and reset indication
messages (Figure 5).

Reset.Req:| 0x10 | 0x40 | Ox40 | 0x16 Reset.Ind:| Ox10 | OxCO | 0xCO | 0x16

Figure 5: Structure of the Reset.Req and Reset.Ind frames

The third frame type has a variable length and is used for the data message. The frame structure is
shown in Figure 6.

© 2024 WEINZIERL ENGINEERING GmbH Page 30/67

WEINZIERL _

0x68 L L 0x68 CR data C 0x16

Figure 6: Structure of the data message

The both fields L contain the length twice of the data in this frame + 1 (for the control byte CR).

The field CR is the control byte of the frame. Its value either 0x73 for odd frames (after reset
request sent by the host) and 0x53 for even frames. In the opposite direction (from ObjectServer to
host) the control byte is 0xF3 for odd frames and 0xD3 for even frames.

The field C contains the checksum of the frame and is the arithmetic sum disregarding overflows
(modulo 256) over all data and the control byte.

© 2024 WEINZIERL ENGINEERING GmbH Page 31/67

WEINZIERL _

Communication example
Host -> ObjectServer: Reset Request

{0x10 0x40 0x40 Ox16}

ObjectServer -> Client: Acknowledgement

{OXE5}

Host -> ObjectServer: GetServerltem.Req (Firmware version)

{0x68 0x07 0x07 0x68 0x73 0xFO 0x01 0x00 0x03 0x00 0x01 0x68 0x16}

ObjectServer -> Client: Acknowledgement

{OXES5}

ObjectServer -> Client: GetServerltem.Res (Firmare version)

{Ox68 0x0B 0x0B 0x68 0xF3 OxFO 0x81 0x00 0x03 0x00 0x01 0x00 0x03 0x01 0x10 0x7C 0x16}

Host -> ObjectServer: Acknowledgement

{OXE5}

Host -> ObjectServer: GetServerltem.Req (Serial number)

{Ox68 0x07 0x07 0x68 0x53 OxFO 0x01 0x00 0x08 0x00 0x01 Ox4D 0x16}

ObjectServer -> Client: Acknowledgement

{OXES5}

ObjectServer -> Client: GetServerltem.Res (Serial number)

{Ox68 0OxOF OxOF 0x68 0xD3 OxFO 0x81 0x00 0x08 0x00 0x01 0x00 0x08 0x06 0x00 0xC5 0x08
0x02 0x00 0x00 0x2A 0x16}

Host -> ObjectServer: Acknowledgement

{OXES5}

© 2024 WEINZIERL ENGINEERING GmbH Page 32/67

WEINZIERL _

4.2 Host protocol security for serial or USB interface

Note: Implemented in devices supporting protocol version 2.2 and above.

421 Secure frames

The security extension of the ObjectServer protocol defines two new message frames:

ObjectServer secure wrapper frame

ObjectServer secure failure frame

ObjectServer secure Sync request frame

ObjectServer secure Sync response frame

4.2.1.1 ObjectServer secure wrapper frame

The ObjectServer secure wrapper frame is used to transport the encrypted ObjectServer service.
This could be any standard ObjectServer request, response or indication.

The ObjectServer secure wrapper frame has variable length and following format:

Offset | Field Size Value | Description

+0 MainService 1 0xCO Main service code

+1 Sequence counter 6 Sequence counter
Encrypted standard

+7 Encrypted data 1-240 _ yP .
ObjectServer service
Encrypted message

+N-4 [Encrypted MAC 4 yP J

authentication code (MAC)

© 2024 WEINZIERL ENGINEERING GmbH

Page 33/67

WEINZIERL _

4.2.1.2 ObjectServer secure failure frame

This response is sent by the server to the client, if any security failure is detected:

Offset | Field Size Value [Description
+0 MainService 1 0oxC1 Main service code
+1 Failure code 1 Failure code

Defined failure codes:

Code Description

0xCE ObjectServer security violation:

Server rejects the received frame for security reasons.

4.2.1.3 ObjectServer secure Sync request frame

The ObjectServer secure Sync request frame is used to allow the lost client to obtain information

about the ObjectServer’s activated/deactivated security sequence counters or their values.

The ObjectServer secure Sync request frame has fixed length and following format:

Offset | Field Size Value | Description

+0 MainService 1 0OxC2 Main service code

Client sequence counter
+1 Sequence counter 6 _
(set to O, if unknown)

Encrypted request

+7
challenge

6 Encrypted random value

Encrypted message
+13 | Encrypted MAC 4 yP g

authentication code (MAC)

Note: the client should generate a new challenge for every request.

© 2024 WEINZIERL ENGINEERING GmbH

Page 34/67

4.2.1.4 ObjectServer secure Sync response frame

WEINZIER

LI

This response is sent by the server to answer the ObjectServer secure Sync request when a
request has been successfully processed by the server:

Offset | Field Size Value | Description
+0 MainService 1 0xC3 Main service code
= request challenge XOR
+1 Response challenge 6 q Y
random value
+7 Encrypted receive 5 BAOS receive counter
counter value of the server
+13 Encrypted send 5 BAOS send counter value
counter of the server
Encrypted message
+19 | Encrypted MAC 4 yp g

authentication code (MAC)

© 2024 WEINZIERL ENGINEERING GmbH

Page 35/67

WEINZIERL _

4.2.2 ObjectServer data encryption

The ObjectServer data encryption is likely the KNX data security based on the standard AES
counter mode with CBC-MAC (AES-CCM). For the details and background can be referenced to
the (1) KNX specification, Chapter 3/3/7 “Application Layer” or (2) RFC3610 “Counter with CBC-
MAC (CCM)”.

The block diagram of the AES-CCM algorithm is presented in the figure 1.

Bo B1 Bn

O) 4 /V\) 4
~& <

v v v
K _,|AES K _,|AES K _,|AES

Figure 7: Block diagram AES-CCM

The following chapters do not describe the AES-CCM algorithm itself, but only the AES-CCM
parameters specific for the ObjectServer security extension. For the definition of the AES-CCM,
please refer to (2) RFC3610 “Counter with CBC-MAC (CCM)”.

4.2.2.1 Encryption of the ObjectServer secure wrapper frame

Following steps are required to encrypt the plain ObjectServer service:

1. Generate first block Bo as follow:

Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

SegqNum 0 0 0 0 0 0 0 0 8 L

SegNum is the next BAOS Send Counter
L is the length of the plain ObjectServer service

2. Generate blocks B;..B filled with plain ObjectServer service, padded with zeros to the next
block end

3. Encrypt all B, blocks with AES and the BAOS Client Key

4. Save MAC = four first bytes of the Y, block

5. Generate Ctr; block as follow:

© 2024 WEINZIERL ENGINEERING GmbH Page 36/67

WEINZIERL _

Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

SegNum 0 0 0 0 |0 0 0 0 9 J

j=[0..N] is the block number
6. Encrypt all Ctrj blocks with AES and the BAOS Client Key

7. XOR first four bytes of the Ctro with stored MAC to get the encrypted MAC

8. XOR the rest of the Ctr, with the plain ObjectServer service to get the encrypted
ObjectServer service

9. Compose the BAOS secure wrapper frame as defined in chapter
“4.2.1.1 ObjectServer secure wrapper frame”

Stepwise example of the message encryption is shown in Appendix E.

© 2024 WEINZIERL ENGINEERING GmbH Page 37/67

WEINZIERL _

4.2.2.2 Decryption of the ObjectServer secure wrapper frame

Following steps are required to decrypt the encrypted ObjectServer service:

1. Generate Ctrj block as follow:

Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

SeqNum 0 0 0 0 |0 0 0 0 9 J

SegNum is the Sequence Counter of the ObjectServer secure wrapper frame
j=[0..N] is the block number

2. Encrypt all Ctrj blocks with AES and the BAOS Client Key

3. XOR first four bytes of the Ctro with the MAC to decrypt it

4. XOR the rest of the Ctr, with the encrypted data to get the plain ObjectServer service

5. Generate first block Bg as follow:

Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

SegqNum 0 0 0 0 0 0 0 0 8 L

L is the length of the encrypted data of the ObjectServer secure wrapper frame

6. Generate blocks B,..B filled with the decrypted plain ObjectServer service, padded with
zeros to the next block end

7. Encrypt all B, blocks with AES and the BAOS Client Key

8. Compare in step 3 decrypted MAC with calculated MAC (four first bytes of the Y, block)

Stepwise example of the message decryption is shown in Appendix F.

© 2024 WEINZIERL ENGINEERING GmbH Page 38/67

Following steps are required to encrypt the ObjectServer secure Sync request frame:

1. Generate the Challenge value as random value of six bytes

2. Generate first block Bg as follow:

WEINZIERL _

4.2.2.3 Encryption of the ObjectServer secure Sync request frame

Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
SegNum Challenge 0 0 12 6
3. Encrypt By block with AES and the BAOS Client Key
4. Save MAC = four first bytes of the Y, block
5. Generate Ctro block as follow:
Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
SegqNum 0 0 0 0O |0 0 0 0 13 0

6. Encrypt Ctro block with AES and the BAOS Client Key

7. XOR first four bytes of the Ctro with stored MAC to get the encrypted MAC

8. XOR the next six byte of the Ctro with the Challenge to get the encrypted Challenge

9. Compose the ObjectServer secure Sync request frame as defined in chapter
“4.2.1.3 ObjectServer secure Sync request frame”

© 2024 WEINZIERL ENGINEERING GmbH

Page 39/67

4.2.2.4 Decryption of the ObjectServer secure Sync response frame

WEINZIERL _

Following steps are required to decrypt the encrypted ObjectServer secure Sync response frame::

1. Calculate the server's random value = request challenge XOR response challenge

2. Generate Ctro block as follow:

Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Server’s random value 0 0 0 0 |0 0 0 0 13 0
3. Encrypt Ctro block with AES and the BAOS Client Key
4. XOR first four bytes of the Ctro with the MAC to decrypt it
5. XOR the rest of the Ctro with the encrypted data to get the plain data
6. Generate first block By as follow:
Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Server’s random value 0 0 0 0 0 0 0 0 12 12

7. Generate block B; filled with the decrypted plain data, padded with zeros to the next block

end

8. Encrypt all B, blocks with AES and the BAOS Client Key

9. Compare in step 4 decrypted MAC with calculated MAC (four first bytes of the Y, block)

© 2024 WEINZIERL ENGINEERING GmbH

Page 40/67

WEINZIERL _

4.2.3 Defined resources

ObjectServer binary protocol with security extension defines three new resources:
e BAOS Client Key
e BAOS Receive Counter
e BAOS Send Counter

4.2.3.1 BAOS Client Key

This resource stores the AES-128 key, used for en-/decryption of the ObjectServer secure wrapper
messages. If the BAOS Client Key is set to the special value (=FF FF FF ... FF FF), then the en-
/decryption of the ObjectServer services isn’t possible anymore and as a result only the plain
services from client will be accepted.

The BAOS Client Key is implemented as the Server Iltem (Appendix A).

. Item ID: ID_CLIENT_KEY (=54)
. Value length: 16 bytes
. Access: Write only
. Data:
Byte Byte
1 16

4.2.3.2 BAOS Receive Counter

This resource stores the BAOS receive counter, the last sequence counter which is received from
client. Only the ObjectServer secure wrapper frames with the higher sequence counter will be
accepted by server from client to prevent the replay attack. If the BAOS Receive Counter is set to
the special value (=FF FF FF FF FF FF), then the check of the sequence counter of the received
services will be deactivated and as a result all ObjectServer secure wrapper frames from client will
be accepted.

The BAOS Receive Counter is implemented as the Server Iltem (Appendix A).

. Item ID: ID_COUNTER_RCYV (=55)
. Value length: 6 bytes
. Access: Read/Write
. Data:
MSB LSB

© 2024 WEINZIERL ENGINEERING GmbH Page 41/67

WEINZIERL _

4.2.3.3 BAOS Send Counter

This resource stores the BAOS send counter, the last sequence counter which is sent to client. It
will be consequently incremented in every ObjectServer secure wrapper frame which is sent by
server to client.

The BAOS Send Counter is implemented as the Server Item (Appendix A).

. Item ID: ID_COUNTER_SND (=56)
. Value length: 6 bytes
. Access: Read/Write
. Data:
MSB LSB

4.2.4 Factory Reset

To initiate a reset of the ObjectServer to the factory state the following request should be sent from
the client:

Byte Byte Byte Byte
1 2 3 4

OxF1 | Ox01 | 0x02 | 0x00

This will also reset the standard KNX resources to the factory state.

Using this service is the only way to revive the ObjectServer if the BAOS Client Key is lost by the
client.

© 2024 WEINZIERL ENGINEERING GmbH Page 42/67

WEINZIERL _

5 BAOS Protocol via USB

The USB implementation of the BAOS protocol is in-line with the USB specification of KNX.
Therefore, HID reports are used as transfer channel. Each report has a size of 64 bytes and starts
with the report ID = 1. Longer BAOS messages are split into several reports.

For details of the USB usage in KNX please refer to the KNX specification. To integrate the USB
BAOS solution in your application please contact Weinzierl concerning the BAOS SDK.

The following is an example of how the GetServerltem.req service is encapsulated in the KNX HID
Report:

KNX HID Report Body

KNX USB Transfer Protocol Header

Protocol Header Body length Protocol EMI ID Manufacturer KNX USB Transfer Protocol Body
version length ID code
00 08 00 06 01 03 00 00 FO 01| 00| 01|00 |01

Figure 8: KNX HID Report with GetServerltem.Req service

5.1 Host protocol security USB interface

The security protocol for the BAOS interface via USB is identical to the security algorithms via
serial interface. Pleas refer to 4.2 Host protocol security for serial or USB interface.

© 2024 WEINZIERL ENGINEERING GmbH Page 43/67

WEINZIERL _

6 BAOS Protocol via IP

Clients communicating over the KNXnet/IP protocol to the ObjectServer should use the “Core”
services of the KNXnet/IP protocol to discover the servers, to get a list of supported services and to
manage the connection. If the ObjectServer protocol is supported by the KNXnet/IP server, a
service family with the ID = OxFO is present in the device information block (DIB) “supported
service families”. The same ID = 0xFO should be used by the client to set the “connection type”
field in the connection request.

The ObjectServer communication procedure is like the tunneling connection of KNXnet/IP
protocols (see chapter 3.8.4 of the KNX specification for details). The communication partners
send the requests (ServiceType = 0xF080) to each other, which will be acknowledged
(ServiceType = 0xF081) by the opposite side. Each request includes the ObjectServer message
(Figure 9).

r
Header size Version (0x20)
KNXnet/IP .
ObjectServer request (0xF080)
header
Frame size
-
~
Connection Structure length Channel ID
header Sequence counter Reserved
~
s
. MainService (OxFO SubService
ObjectServer ()
message
~

Figure 9: Integration of the ObjectServer message into a KNXnet/IP frame

6.1 TCP/IP

TCP/IP provides the whole required functionality from connection management and maintenance
to data integrity. The encapsulation of the ObjectServer protocol into TCP/IP is simple. Only a
header shall be added (see Figure 10) to the ObjectServer protocol. This header consists of a
KNXnet/IP header including the frame length and a connection header.

The frame length is calculated like this:
Header size (6 bytes) + structure length (4 bytes) + length of object server message

Before the client is able to send the requests to the ObjectServer it must establish a TCP/IP
connection to the IP address and the TCP port of an ObjectServer.

The default port for the ObjectServer is 12004 (decimal).

© 2024 WEINZIERL ENGINEERING GmbH Page 44/67

WEINZIERL _

To prevent a timeout of the TCP/IP connection, at least every 60 seconds a communication shall
be performed (e.g. requesting a server item).

Only a single object server request shall be transmitted via TCP.

KNXnet/IP
header

Connection
header

ObjectServer
message

<

\Y4

AY4

Header size Version
(0x06) (0x20)
ObjectServer request
(0xF080)
Frame size
Structure length Reserved
(0x04) (0x00)
Reserved Reserved
(0x00) (0x00)
MainService .
(OXFO) SubService

Figure 10: Integration of the ObjectServer message into TCP/IP

© 2024 WEINZIERL ENGINEERING GmbH

Page 45/67

WEINZIERL _

6.1.1 Example (GetServerltem)

This example shows how to get the first server item (hardware type) of the device using the TCP/IP
encapsulation:

6.1.1.1 Request

Header

Object Server Message
KNXnet/IP Header Connection Hdr

06 |20 | FO|80|00| 10|04 00|00 |0O0O|FO|0O1|0O0O|O01]|00]|O1

Figure 11: Example (GetServerltem.Req)

6.1.1.2 Response

Header
Object Server Message

KNXnet/IP Header Connection Hdr

06 | 20| FO |80 | 00|19 |04 |00 |00 |00 |FO|81|00|01|00|01|00|01|06|00]|O00]|CS5]O07

Figure 12: Example (GetServerltem.Res)

© 2024 WEINZIERL ENGINEERING GmbH Page 46/67

WEINZIERL _

6.2 IP Discovery

This chapter describes the possibilities to find the installed ObjectServers in the local network.
This allows the clients to find and to select automatically a certain ObjectServer for the
communication, alternatively manually selected by the user. Currently only one discovery
procedure is supported, which is based on the KNXnet/IP discovery algorithm. This chapter
describes it briefly. For the full description of the KNXnet/IP discovery algorithm please refer to the
KNX handbook Volume 3.8.

For the IP discovery procedure is shown in Figure 13. The client, which is looking for the installed
ObjectServers, sends a search request via multicast to the predefined address 224.0.23.12, port
3671 (decimal). The ObjectServers send back a search response with the device information block
(DIB), which contains the information about the support of the ObjectServer protocol and other
things.

—
Bad
o
Search.Res %
N
(6]
[¢6)
2
@)
_ Search.Req
Client#1 |———m—------- >
\ Z
+
o
c
(]
Search.Res 2}
o
o]
@)

Figure 13: IP discovery

© 2024 WEINZIERL ENGINEERING GmbH Page 47/67

6.2.1 Search.Req

WEINZIERL _

The search request has a length of 14 bytes and its format is shown in Figure 14. Most fields are
fixed, the client should fill only the fields “IP address” and “IP port”. These fields are used by the
ObjectServer as destination IP address and port for the search response. Fields longer than one

byte are big-endian formatted.

+0 +1
Header size Version
+0
0x06 0x10
Search request
+2
0x0201
Packet length
+4
0x000E
+6 Structure length Protocol code
0x08 0x01
+8 IP address
0x???2?2?2?7?
IP port
+12 P
0x??2??

Figure 14: Structure of the Search.Req packet

© 2024 WEINZIERL ENGINEERING GmbH

Page 48/67

6.2.2 Search.Res

WEINZIERL _

The search response from the ObjectServer has, in version 1.0 of the protocol, the length of 84
bytes and its format is shown in Figure 15. The support of the ObjectServer protocol by the device
is indicated through the existence of the manufacturer DIB at offset +76 bytes in the packet. This

manufacturer DIB has the length of 8 bytes.

+0 +1
Header size Version
+0
0x06 0x10
Search response
+2
0x0202
Packet length
+4
0x0054
HPAI length
+6
0x08
Host Protocol Address Information
(HPAI)
DEV DIB length
+14
0x36
Device information block
(DEV DIB)
SVC DIB length
+ 68
0x08
Supported services DIB
(SvC DIB)
- Manufacturer DIB len Manufacturer DIB type
0x08 OXFE
Manufacturer 1D
+78
0x00C5
Record type Record length
+80 yp g
0x01 0x04
+ 82 ObjectServer protocol ObjectServer version
0xFO 0x20

Figure 15: Structure of the Search.Res packet

© 2024 WEINZIERL ENGINEERING GmbH

Page 49/67

6.3 IP Security Extension

WEINZIERL _

The ObjectServer protocol with IP Security Extension is based on KNXnet/IP Security. A major
benefit of this solution is that it does not require certificates.

The ObjectServer services are encapsulated into KNXnet/IP Secure Wrapper frames:

KNXnet/IP KNXnet/IP Secure Wrapper Body
TCP/ Secure
Ethernet | IP | 5p Wrapper Security Encapsulated MAG
Header Information KNXnet/IP Frame
‘ Authenticated Authenticated‘ Authenticated & Encrypted Encrypted
Unencrypted
‘ Replay protected

Figure 16: KNXnet/IP Secure Wrapper frame

For the details and background can be referenced to (3) KNX specification, Chapter 3/8/9 “KNX IP

Secure”.

The main difference to KNXnet/IP Security is that the ObjectServer protocol is using another port
than 3671. This port can be configured using the ETS, the default port number is 12004.

© 2024 WEINZIERL ENGINEERING GmbH

Page 50/67

WEINZIERL _

6.3.1 Secure session

Firstly, a secure session has to be set up. This is based on an Elliptic-Curve Diffie-Hellman
(ECDH) key agreement algorithm using the Curve25519.

‘Client ‘Server

-

SESSION_REQUEST(X)

Y

SESSION_RESPONSE(Y [|CCMo,., autcode (X))

R

ECURE_WRAPPER(CCM, ey
ESSION_AUTHENTICATE(UserID |CCMeyeqyors(XY))

L L

X ... ECDH Public Value Client
¥ ... ECDH Public Value Server
|| ... Concatenation operator
A .. XOR operator

Figure 30 - Secure session setup handshake

Figure 17: Secure session setup handshake

A detailed explanation can be found in the chapter 2.2.3 Unicast connections of (3) KNX
specification, Chapter 3/8/9 “KNX IP Secure”.

The secure ObjectServer services require the User ID = 1.

The password hash is derived from the user chosen password text in the ETS parameter dialogue
(General Settings). It has to be calculated by the client when authenticating a secure ObjectServer
session:

PasswordHash =

PBKDF2(HMAC-SHA256,<PASSWORD>,"user-password.1.secure.ip.knx.org", 500, 128)

© 2024 WEINZIERL ENGINEERING GmbH Page 51/67

6.3.2 Connection

WEINZIERL _

The ObjectServer connection has be established using the service Connect.req / Connect.Resp
services. This can be done inside a secure session.

—
KNXnet/IP

lient
f en y

Control

KNXnet/IP
server

Service container
A

O

Connect.req @

Connect.resp @

Data

(<

J

e
1
ol =

Data.req

-~
. /

Figure 5 — Establishing a data connection

Figure 18: Establishing a ObjectServer connection

This is the required connect request information (CRI):

Manuf. spec. Protocol

reserved

Figure 19: ObjectServer CRI

© 2024 WEINZIERL ENGINEERING GmbH

0xFE = Manufacture
| Specific Protocol

0x00 O0xC5 = Weinzierl

| = 0xFO = BAOS

Page 52/67

6.3.3 Communication

WEINZIERL _

The ObjectServer services are similar to KNXnet/IP Tunneling.

This is the required ObjectServer request:

ObjectServer service |

Figure 20: ObjectServer request

© 2024 WEINZIERL ENGINEERING GmbH

KNXnet/IP Header
=6

0x20

= BAOS_REQUEST = 0xF080

KNXnet/IP connection header:
=4

= reserved = 0

Data = BAOS frame

Page 53/67

6.4 Device discovery

WEINZIERL _

Available KNX IP BAOS devices can be discovered using the KNXnet/IP search services:

SearchReq

Sent from the client via multicast (KNX System multicast IP address: 223.0.23.12, port 3671)

SearchResp

Direct response to the client.

SearchRegExt

SearchRespExt

The search responses include a manufacturer specific device Information Block (DIB). Record type
1 is always present, record type 2 only if security is enabled.

This is the DIB including record type 1 & 2:

Manufacturer DIB len |

Weinzierl protocol
___________________________ |
Required Security Version |

12

0xFE

0x00C5 = Weinzierl

1 (Weinzierl specific protocols)

0xFO (ObjectServer protocol)

0x22 (ObjectServer version)

2 (Weinzierl security protocols)

0xF0 (ObjectServer protocol)

= 0x01 (KNXnet/IP security version)

Encoded similar to the Supported service families DIB as in "3/8/2 Core".

Encoded similar to the Secured service families DIB as in "3/8/9 Security 2.6.2.2".

Figure 21: ObjectServer DIB

© 2024 WEINZIERL ENGINEERING GmbH

Page 54/67

WEINZIERL _

6.5 Examples

6.5.1 Unsecure ObjectServer communication

Open a ObjectServer connection

Connect.req
06 20 02 05 00 1C 08 02 00 00 00 00 00 00 08 02 00 00 00 00 00 00 06 FE 00 C5 FO 00
Connect.res

06 20 02 06 00 12 01 00 08 02 00 00 00 00 00 00 02 FO
Get ObjectServer server item

GetServerltem.req

FO 010001 0001

Encapsulated in BAOS.req

06 20 FO 80 00 10 04 01 00 00 FO 01 00 01 00 01

GetServerltem.res

FO 81 00 01 00 01 00 01 06 00 OO0 C5 07 00 14

Encapsulated in BAOS.res

06 20 FO 80 00 19 04 01 00 00 FO 81 00 01 00 01 00 01 06 00 00 C5 07 00 14

Close a ObjectServer connection
Disconnect.req
06 20 02 09 00 10 01 00 08 02 00 00 00 00 00 00

Disconnect.res

06 20 02 OA 00 08 01 00O

© 2024 WEINZIERL ENGINEERING GmbH Page 55/67

WEINZIERL _

6.5.2 Secure ObjectServer communication
In order to be able to fully interpret a secure telegram log, all keys (including the private ones)
would have to be known.

This example shows the sequence of steps required. Detailed examples can be found in annex A
of (3) KNX specification, Chapter 3/8/9 “KNX IP Secure”.

Create a secure session using Curve25519

Session.req

Session.res
Session authentification

SessionAuth
SecureWrapper
SessionStatus

SecureWrapper
Open a ObjectServer connection

Connect.req
SecureWrapper
Connect.res

SecureWrapper
Get ObjectServer server item

GetServerltem.req
Encapsulated in BAOS.req
SecureWrapper

BAOS GetServerltem.res
Encapsulated in BAOS.res

SecureWrapper

© 2024 WEINZIERL ENGINEERING GmbH Page 56/67

WEINZIERL _

Close a BAOS connection

Disconnect.req
SecureWrapper
Disconnect.res

SecureWrapper

Close session

SessionStatus

SecureWrapper

SessionStatus

SecureWrapper

© 2024 WEINZIERL ENGINEERING GmbH Page 57/67

WEINZIERL _

Appendix A. Server Item IDs

The following items are present in all device types and protocol versions 2.1:

ID

Item

Size in
bytes

Ac-
cess

Indi-
cation

1

Hardware type

Can be used to identify the hardware type. Coding is manufacturer
specific.

It is mapped to property PID_HARDWARE_TYPE in device object.

6

Hardware version
Version of the ObjectServer hardware
Coding e.g.: 0x10 = Version 1.0

Firmware version
Version of the ObjectServer firmware
Coding e.g.: 0x10 = Version 1.0

KNX manufacturer code DEV
KNX manufacturer code of the device, not modified by ETS.

It is mapped to property PID_MANUFACTURER_ID in device
object.

KNX manufacturer code APP
KNX manufacturer code loaded by ETS.

It is mapped to bytes 0 and 1 of property PID_APPLICATION_VER
in application object.

Application ID (ETS)
ID of application loaded by ETS.

It is mapped to bytes 2 and 3 of property PID_APPLICATION_VER
in application object.

Application version (ETS)
Version of application loaded by ETS.

It is mapped to byte 4 of property PID_APPLICATION_VER in
application object.

Serial number
Serial number of device.
It is mapped to property PID_SERIAL_NUMBER in device object.

Time since reset [ms]

10

Bus connection state
Values: “0” — disconnected
“1” — connected

11

Maximum buffer size

12

Length of description string

13

Baudrate (only if serial port is present)
Values: “0” — unknown

RW

© 2024 WEINZIERL ENGINEERING GmbH

Page 58/67

WEINZIERL _

“1” — 19200
“2” — 115200

14 Current buffer size

15 Programming mode
Values (bit 0): “0” — not active
“1” — active

16 Protocol Version (Binary)
Version of the ObjectServer binary protocol
Coding e.g.: 0x20 = Version 2.0

17 Indication Sending
Values (bit 0): “0” — not active
“1” — active

The following items are optional and are fully or partly implemented in some device types:

Sizein Ac- Indi-
ID Item .
bytes cess | cation
Protocol Version (WebService) 1 R N
18 Version of the ObjectServer protocol via web services
Coding e.g.: 0x20 = Version 2.0
19 Protocol Version (RestService) 1 R N
Version of the ObjectServer protocol via rest services
Coding e.g.: 0x21 = Version 2.1
20 Individual Address 2 RW N
The individual KNX address of the device
21 Mac Address 6 R N
22 Tunnelling Enabled 1 RW
KNXnet/IP tunneling
Values: “0” — disabled
“1” — enabled
23 Baos Binary Enabled 1 RW [Y
Access via BAOS Binary connection
Values: “0” — disabled
“1” — enabled
24 Baos Web Enabled 1 RW |Y
Web Services
Values: “0” — disabled
“1” — enabled
25 Baos Rest Enabled 1 RW [Y
REST services
Values: “0” — disabled
“1” — enabled
26 | Http File Enabled 1 RW [Y
Webserver disabled or disabled

© 2024 WEINZIERL ENGINEERING GmbH

Page 59/67

WEINZIERL _

Values: “0” — disabled
“1” — enabled
27 Search Request Enabled 1 RW |Y
Device responds to search requests (yes/no)
Values: “0” — no
“1” —yes
28 Is Structured 1 R N
Indicates if the current loaded database is structured
Values: “0” — False
“1” — True
29 Max Management Clients 1 R N
Max amount of available management connections
30 Connected Management Clients 1 R N
31 Max Tunneling Clients 1 R N
32 Connected Tunneling Clients 1 R N
33 Max Baos UDP Clients 1 R N
34 Connected Baos UDP Clients 1 R N
35 Max Baos TCP Clients 1 R N
36 Connected Baos TCP Clients 1 R N
37 Device Friendly Name 30 RW N
String of an optionally given name for this device.
38 Max Datapoints 2 R N
Number of available data points
39 Configured Datapoints 2 R N
Current number of configured data points
40 Max Parameter Bytes 2 R N
Number of available parameter bytes
41 Download Counter 2 R N
ETS download counter
42 IP Assignment 1 RW |Y
DHCP or manual
43 IP Address 4 RW |Y
44 Subnet Mask 4 RW |Y
45 Default Gateway 4 RW |Y
46 Time Since Reset Unit 1 RW |Y
Xx=ms, s=seconds, m=minutes, h= hours
a7 System Time variable | RW
48 System Timezone Offset 1 RW |Y
49 Menu Enabled 1 RW [Y
Values can be edited on the device menu
Values: “0” — disabled
“1” — enabled

© 2024 WEINZIERL ENGINEERING GmbH

Page 60/67

WEINZIERL _

50

Enable Suspend
Device can enter the suspend state if enabled.
This feature is used for USB only.
Values: “0” — disabled
“1” — enabled (default after reset)

RW

N

51

RF Domain Address

It is mapped to property PID_RF_DOMAIN_ADDRESS in device

object.

RW

52

Supported Status Flags

(related to Item #53)

Values:

Bit 0-15: “0” — flag not supported
“1” — flag supported

53

Status Flags

Values:

Bit O: application running

Bit 1: application and tables loaded
Bit 2: TL connection open

Bit 3: secure mode activated

Bit 4-15: reserved

54

Client Key

BAOS security: AES-128 key for en-/decryption.

(s. 4.2.3.1 BAOS Client Key for details)

16

55

Receive Counter
BAOS security: receive counter.
(s. 4.2.3.2 BAOS Receive Counter for details)

RW

56

Send Counter
BAOS security: send counter.
(s. 4.2.3.3 BAOS Send Counter for details)

RW

Note: Fields longer than one byte are big-endian formatted.

© 2024 WEINZIERL ENGINEERING GmbH

Page 61/67

WEINZIERL _

Appendix B. Error codes
In case of an error, the response informs about the failed item ID (Start) and Count is always 0.
Error code Description
0 No error
1 Internal error
2 No element found:
- Server item is not available,
- Datapoint is not configured by ETS
- Datapoint not updated from KNX-Bus
3 Buffer is too small:
- Buffer for description string too small
- Buffer for parameters too small
4 Item is not writeable:
- Server item is not writable
5 Service is hot supported
E.g. BAOS Modules do not support Description Strings.
6 Bad service parameter:
Server item, Datapoint or Parameter ID out of range.
7 Bad ID: Writing of item failed
- Server item ID out of range
- Datapoint out of range
- Datapoint not configured by ETS
8 Bad command/value:
- Writing Server item failed (internal error)
- Writing Datapoint failed (illegal command)
9 Bad length:
Wrong length writting Server item or Datapoint or
Parameter bytes.
10 Message inconsistent:
Count in writting request is wrong.
11 Object server is busy

© 2024 WEINZIERL ENGINEERING GmbH

Page 62/67

Appendix C.

Datapoint value types

WEINZIERL _

Type code Value size
0 1 bit
1 2 bits
2 3 bits
3 4 bits
4 5 bits
5 6 bits
6 7 bits
7 1 byte
8 2 bytes
9 3 bytes
10 4 bytes
11 6 bytes
12 8 bytes
13 10 bytes
14 14 bytes

© 2024 WEINZIERL ENGINEERING GmbH

Page 63/67

WEINZIERL _

Appendix D. Datapoint types (DPT)
Type code Value size
0 Datapoint disabled
1 DPT 1 (1 Bit, Boolean)
2 DPT 2 (2 Bit, Control)
3 DPT 3 (4 Bit, Dimming, Blinds)
4 DPT 4 (8 Bit, Character Set)
5 DPT 5 (8 Bit, Unsigned Value)
6 DPT 6 (8 Bit, Signed Value)
7 DPT 7 (2 Byte, Unsigned Value)
8 DPT 8 (2 Byte, Signed Value)
9 DPT 9 (2 Byte, Float Value)
10 DPT 10 (3 Byte, Time)
11 DPT 11 (3 Byte, Date)
12 DPT 12 (4 Byte, Unsigned Value)
13 DPT 13 (4 Byte, Signed Value)
14 DPT 14 (4 Byte, Float Value)
15 DPT 15 (4 Byte, Access)
16 DPT 16 (14 Byte, String)
17 DPT 17 (1 Byte, Scene Number)
18 DPT 18 (1 Byte, Scene Control)
19 DPT 19 (8 Byte, Date Time)
20...31 Reserved
32 DPT 20 (1 Byte, HVAC Mode)
33 DPT 232 (3 Byte, Color RGB)
34 DPT 251 (6 Byte, Color RGBW)
35...254 Reserved
255 Unknown DPT

© 2024 WEINZIERL ENGINEERING GmbH

Page 64/67

WEINZIERL _

Appendix E. Encryption example

Plain ObjectServer service: {OxF0, 0x01, 0x00, 0x01, 0x00, 0x01}
BAOS Client Key: [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]
BAOS Send Counter: 0x010203040506

Block Bo: [0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x08, 0x06]

Block By: [0XFO, 0x01, 0x00, 0x01, 0x00, 0x01, 000, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0X00,
0x00, 0x00]

Block Yo: [0XC5, 0x6D, Ox1E, 0xF4, OxBF, 0x06, 0xA8, 0xD4, 0x61, 0x9D, 0xBO, 0xBF, OxDE,
0x30, 0x3B, 0x48]

Block Y1: [0x51, 0x76, 0x04, OXEA, OX0B, OX7A, Ox9F, 0X5B, Ox3F, 0x38, Ox6F, 0x14, OXES, OXCA,
0xD9, 0XA5]

Plain MAC: [0x51, 0x76, 0x04, OXEA]

Block Ctro: [0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x09, 0x00]

Encrypted Ctro: [OXDA, 0x76, 0xC7, OX9E, OXFA, 0x39, 0x48, 0x6A, OxBF, Ox7A, OxBB, OxF3,
O0xF2, 0xC1, OxDC, Ox4F]

Encrypted MAC: [0x8B, 0x00, 0xC3, 0x74]
Encrypted Data: [0X0A, 0x38, 0x48, 0x6B, OxBF, 0x7B]

Result ObjectServer secure wrapper frame:

{0XCO, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, OXOA, 0x38, 0x48, 0x6B, OxBF, 0x7B, 0x8B, 0x00,
OxC3, 0x74}

© 2024 WEINZIERL ENGINEERING GmbH Page 65/67

WEINZIERL _

Appendix F. Decryption example

ObjectServer secure wrapper frame:

{0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, OxFA, OxF1, OxD3, 0x3B, 0x60, OX7A, OXEE, 0xA4,
0x07, 0x29, 0x7B, OxAF, 0x9A, 0x93, OxF6, 0xB1, Ox0C, 0xB4, 0xB5}

BAOS Client Key: [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]

Block Ctro: [0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x09, 0x00]

Block Ctry: [0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x09, 0x01]

Encrypted Ctry:

[Ox2A, OxOE, 0xA5, 0x4E, 0x0A, 0x70, 0xD3, 0x3A, 0x60, 0x7B, OXEE, OxA5, 0x01, 0x29, Ox7B,
Ox6A|]

[0x99, 0x93, OXFF, 0x56, 0XCD, 0x49, 0xD5, 0x8F, OXFB, 0x35, OXE2, 0x87, OXBC, OX5A, 0x98,
0x27]

Decrypted MAC: [0x9B, 0x02, 0x11, OxFB]

Plain ObjectServer service:

{OxFO0, 0x81, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x06, 0x00, 0x00, 0XC5, 0x03, 0x00, 0x09}

Block Bo: [0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x08, OXOF]

Block By: [0XFO, 0x81, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x06, 0x00, 000, 0XC5, 0x03, 000,
0x09, 0x00]

Block Yo: [0x02, 0xD6, 0xD5, 0x22, 0xA6, 0x2B, OxF9, 0xBD, OXCE, 0xB5, 0x7A, 0xC7, OXCA,
0x16, OxF5, 0x83]

Block Yi: [0x9B, 0x02, 0x11, OxFB, 0x1F, 0x4D, 0xBD, 0x70, 0x80, OXxAD, 0xBD, 0x84, 0x6D,
Ox4A, 0x67, 0x32]

Calculated MAC: [0x9B, 0x02, 0x11, OxFB]

© 2024 WEINZIERL ENGINEERING GmbH Page 66/67

WEINZIERL _

KNX

WEINZIERL ENGINEERING GmbH
Achatz 3-4

84508 Burgkirchen an der Alz
GERMANY

Tel.: +49 8677 /916 36 - 0
E-Mail: info@weinzierl.de
Web: www.weinzierl.de

2024-07-22

© 2024 WEINZIERL ENGINEERING GmbH Page 67/67

